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EVAPORATION OF 'LUBRICATING AGENT® IN
THERMAL TREATMENT OF TECHNICAL SYNTHETIC

FIBERS

A. V. Viasov and S. P. Fisenko UDC 677.46.021.64

A mathematical model of the evaporation of a water-emulsion mixture (lubricating agent) in thermal
treatment of a synthetic fiber is suggested. It is based on an approximation of interpenetrating continua. A
substantial effect of deformation heat losses on the evaporation-front motion is shown.

Introduction. The production of synthetic fibers is a powerful, strategically important, and very energy
consuming subbranch of chemical industry [l ]. Optimization of the production of synthetic fibers requires a largc
number of experimental and theoretical investigations of both chemical and heat/mass exchange natures. In the
production of synthetic fibers their thermal treatment is of great importance. In the process of thermal treatment
a technical fluid called a "lubricant” is used [l ] which is applied to the fibers and which is evaporated on heating
and drawing of the fibers in a thermal chamber called an "iron." The lubricant is an emulsion consisting of up to
809 water and a variety of polyesters. The process of evaporation of the lubricant from a system of fibers moving
along the "iron", whose metal surface temperature is constant, is greatly influenced by the drawing of fibers, which
reduces the fiber diameter several times. The process of fiber deformation requires the expenditure of thermal
energy transferred from the "iron" and substantially slows down the evaporation process {2]. The present article
is devoted to mathematical simulation of lubricant cvaporation in a Stefan approximation taking account of the
thermal energy loss for the deformation (drawing) of a fiber. Our experimental investigations showed that gencrally
the effervescence of a lubricant is dependent on its composition. Its boiling temperature lies within 93—100°C.
Hereafter, we shall ignore this cffect to remain within the bounds of the prescribed accuracy and assume that
evaporation begins on the attainment of 100°C at a certain point of the fiber. We shall ignore lubricant evaporation
at lower temperatures for two rcasons: at lower tcmperatures the partial pressurc of the lubricant vapors is
substantially lower than atmospheric pressure, and the diffusional resistance of noncondensing gases plays a
retarding role {3 ].

Mathematical Mode!l of the Process of Thermal Treatment of Fiber in Drawing. Let us introducc a
Cartesian coordinate system such that the x axis is criented in the direction of motion of the fiber that enters the
"iron.” The origin of the coordinatc system coincides with the beginning of the heated surface of the "iron.” The z
axis is perpendicular to the "iron” surface. Let us approximate the dependence of the velocity v(x) of an clement
of the deformed fiber on the distance x by the following expression:

v{x) =vy+ax=yy(l +ax/vy), (H

where v is the initial velocity of the fiber entering the "iron;” the parameter « characterizes the degree of the
deformation of the fiber in the "iron.” For many polymer fibers and drawing technologies this important paramcter
is approximately equal to 10. The determination of « is very simple if we know the length of the "iron™ and the
velocities of the fiber at the entrance to the "iron” and at its exit. Let J(x) be the diamcter of the fiber at the distance
x. Then, by virtue of the continuity equation {3, 4] and relation (1), considering the cylindrical shape of the fiber,

we have
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Fig. 1. Distribution of temperaturc field in section of a deformed fiber at

distance x from beginning of "iron.”

d(x)=d(vy/v()>, 2

where d is the fiber diameter at the entrance to the "iron.”

We shall solve the thermal part of the problem in an approximation of interpenetrating continua [5]. This
will allow us to use a onc-dimensional approximation to describe the temperature ficld. Thus, the fiber temperature
used below has the following physical meaning: this is the mean temperature in the interior of the fiber at a constant
z. Let us now determine the effective density of the lubricant p, in the following manner. Assume that a lubricant
layer of thickness a is applied to a fiber of diameter ¢, with the lubricant having the density p. Then, the effective
density of the lubricant is

pe = 4dap/(d + a)°, 3

As follows from relation (3), when a << d, the value of the cffective density is proportional to the initial
thickness of the lubricant. We note that the conservation law (2) shows that the effective density p. does not change
in the process of drawing. The designations of the characteristic regions of our problem are given in Fig. 1. In
region I, the lubricant is fully evaporated, since the temperature within it is above 100°C. At the moving front (1)
the lubricant is being evaporated; in region I1 the temperature is not high and there is no evaporation. For region
[ we have the equation of heat conduction with a sink:

P d T (z, ) =AV"T(z, 1) = 1. 4

Physically, /g is the volumetric density of the energy spent in elongation of the fiber. The value of /y is unknown,
however, we may statc that thc magnitude of this parameter depends on Young's modulus of the fiber E and on
the parameter a introduced above. Then, from dimensionality considerations [4] it follows that

Iy = CEa,

where C is a numerical constant that cannot be determined within the scope of dimensionality theory and that
usually changes within the range of from 1 to 10 [3] The boundary conditions for Eq. (4) in region I have the

form

T(-d2)=T,; T() =100. &)

For region 11 we also have the heat conduction Eq. (4) with the boundary condition

VT (d72) =0, (6)
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which means that we ignore heat exchange between the fiber and the heated air compared with heat exchange with
the metal surface of the "iron.” To determine the position of the evaporation zonc, we have the condition

—AVT| ;-0 = wsUpe = AVT| . ¢4, 7

de

WS = d[ N
where wg is the Stefan evaporation-front velocity, which actually is of basic interest for our problem. Attention
should bec given to the fact that the boundarics of the regions change not only because of evaporation of the
lubricant, but also as a result of deformation in drawing. To solve Eq. (4) subject to boundary conditions (5) and
(6) and condition (7), we shall avail ourselves of the technique suggested in [6 |: for cach of the regions a stationary
solution for temperature is constructed, which is subsequently used in an approximate search of the front velocity
with the aid of condition (7). It is not difficult to show that the characteristic time for the temperature profile to

attain a quasistationary regime
2 s
r=d cp/A

is very small, i.c., much smaller than the characteristic times of the problem. As a result of application of the
technique from [6 ], we have the following system of ordinary differential equations:

%= vy + ax, 8
%"; =wg t vy, 9

where vy is the rate of change of the boundary between the regions as a result of the fiber drawing. Using Egs. (D
and (2), it is easy to show that in a laboratory coordinate system

vy = —La/2. o)

After simple calculations the expression for wg can be presented in the form

A 1@ -2 AT 0
ST T LU 41 C+d/D|" (h

where AT =T, — 100.
The system of Egs. (8) and (9) was solved numerically with the initial condition
t=0 x=0 and { =¢, (12)

so that o = —d /2.

Resuits of Calculations. Before moving to the results of numerical calculations, we should pay attention o
the fact that if we assume in Eq. (11) that 7 = 0 and ignore the change in the fiber diameter due to drawing, then
Eq. (11) can be casily ignored. As a result, we have the following expression for the position of the evaporation

front as a function of time, having designated it by

. QAT -
g‘+d()’/2:V(pU)' (13
e

Finally we shall consider deformation heat losses of the fiber using Eq. (11, It is obvious that we can introduce

the dimensionless criterion M:
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Fig. 2. Dependence of dimensionless coordinate of lubricant evaporation front
position {(x)/§s(x) and of the parameter {/d(x) on x at different valucs of M.

M= MTT . (14)
dol

If M>>1, then we can ignore the influence of deformation heat losses. When M << I, naturally, there is no
cvaporation at all. It is important that the influence of deformation heat losses is inversely proportional to the square
of the fiber diameter, Young's modulus of the substance, and to the parameter a. Thus, as was proved by numerical
calculations, in a number of cases the evaporation front starts to move only after the deformation-induced decrease
in the fiber diameter. This conclusion has a great applied significance. Of the parameters available in the problem
considered, we can form a dimensionless complex xd/v that characterizes the dimensions of the "iron" and the
kinematics of the fiber (see Eq. (1)).

Figure 2 presents the dependence of the position of the dimensionless variable {/& and of the important
technological paramcter §/d(x) on the dimensionless length covered by the fiber in the “iron" at different valucs
of M. It is scen that already when M < 0.5 the motion of the evaporation front differs substantially from the regime
in which deformation hecat losses are not taken into account.

Conclusion. Numerical investigation conducted with the aid of the mathematical model developed showed
that lubricant cvaporation is grecatly influenced by the thermal cnergy losses in fiber deformation, which are
determined by the parameter « introduced in the present work and by Young's modulus of the fiber. It is shown
that the velocity of the evaporation front is inversely proportional to the initial thickness of the lubricant film and
to the cffective latent heat of the evaporation of the lubricant and is directly proportional to the initial diameter of
the fiber. For technological purposes of considerable importance is the dimensionless length of the "iron,” which is
dircctly proportional to its length and parameter a and is inversely proportional to the initial velocity of the fiber.

NOTATION

x, path covered by small clement of fiber along "iron;” 1, current time; 4(x), current diameter of a fiber in
drawing; v, initial velocity of fiber at entrance to "iron;" p, and U, cffective density and latent heat of evaporation
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of lubricant; A and E, thermal conductivity cocfficicnt and Young's modulus of fiber matcrial; M, dimcnsionless
similarity paramcter (see Eq. (14)); {(x) and {;(x), coordinates of cvaporation front calculated with and without
allowance for deformation heat losses.
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